Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood

نویسنده

  • Miklós Csuös
چکیده

SUMMARY Count is a software package for the analysis of numerical profiles on a phylogeny. It is primarily designed to deal with profiles derived from the phyletic distribution of homologous gene families, but is suited to study any other integer-valued evolutionary characters. Count performs ancestral reconstruction, and infers family- and lineage-specific characteristics along the evolutionary tree. It implements popular methods employed in gene content analysis such as Dollo and Wagner parsimony, propensity for gene loss, as well as probabilistic methods involving a phylogenetic birth-and-death model. AVAILABILITY Count is available as a stand-alone Java application, as well as an application bundle for MacOS X, at the web site http://www.iro.umontreal.ca/ approximately csuros/gene_content/count.html. It can also be launched using Java Webstart from the same site. The software is distributed under a BSD-style license. Source code is available upon request from the author.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods.

Intraspecific variation is abundant in all types of systematic characters but is rarely addressed in simulation studies of phylogenetic method performance. We compared the accuracy of 15 phylogenetic methods using simulations to (1) determine the most accurate method(s) for analyzing polymorphic data (under simplified conditions) and (2) test if generalizations about the performance of phylogen...

متن کامل

Failed refutations: further comments on parsimony and likelihood methods and their relationship to Popper's degree of corroboration.

Kluge's (2001, Syst. Biol. 50:322-330) continued arguments that phylogenetic methods based on the statistical principle of likelihood are incompatible with the philosophy of science described by Karl Popper are based on false premises related to Kluge's misrepresentations of Popper's philosophy. Contrary to Kluge's conjectures, likelihood methods are not inherently verificationist; they do not ...

متن کامل

Surprising properties of Maximum Parsimony on phylogenetic networks

Phylogenetic inference aims at reconstructing the evolutionary relationships of different species given some data (e.g. DNA, RNA or proteins). Traditionally, the relationships between species were assumed to be treelike, so the most frequently used phylogenetic inference methods like Maximum Parsimony were originally introduced to reconstruct phylogenetic trees. However, it has been well-known ...

متن کامل

Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of Parsimony, Likelihood, and Bayesian approaches.

Phylogenetic analysis of large datasets using complex nucleotide substitution models under a maximum likelihood framework can be computationally infeasible, especially when attempting to infer confidence values by way of nonparametric bootstrapping. Recent developments in phylogenetics suggest the computational burden can be reduced by using Bayesian methods of phylogenetic inference. However, ...

متن کامل

On the best evolutionary rate for phylogenetic analysis.

The effect of the evolutionary rate of a gene on the accuracy of phylogeny reconstruction was examined by computer stimulation. The evolutionary rate is measured by the tree length, that is, the expected total number of nucleotide substitutions per site on the phylogeny. DNA sequence data were simulated using both fixed trees with specified branch lengths and random trees with branch lengths ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 26 15  شماره 

صفحات  -

تاریخ انتشار 2010